New Dual Pump Controller on the Way from Jebao

Announced earlir this week, Jebao has released a brand new Twins Controller for the unsually popular Jebao WP Series and FS Type next generation pumps. After sorting through the poorly written announcement, here are the details of the controller that we were able to come up with. The new Twins Controller, which was designed by Fish-Street engineers, provides more flow patterns and a higher output than its predecessor while using up one less power outlet and controller port. Where the old controller had three preset flow rate settings (50, 75 and 100%), this new controller has a range of 30-100% with far more steps in between. In terms of functions, the Twins Controller also allows for alternating pump mode and a switch mode, which allows one pump to act as a stream and the other as a pulsing wavebox. As far as all of the buttons and indicator LEDs go, Fish-Street provided a pretty thorough breakdown of what each does. And not trying to re-invent the wheel, here is there descriptions: MODE/NIGHT: Press the “MODE” button once to select the function, long press to enter into Night mode. FEED/LOCK: Press the “FEED” button once to get into 10- min feed mode, long press to lock the knob. P1_FLOW: Setting the flow rate of P1 Pump. P2_FLOW: Setting the flow rate of P2 Pump

The Complete Beginner’s Guide to Seahorse Evolution

Just how did seahorses make the leap from ordinary fish to extraordinary oddity? Damselfish photo by Klaus Stiefel When you look at a seahorse, it’s easy to wonder how such a bizarre creature could come to be. The seahorse’s behavior and appearance is so radically different from most other fish that one can’t help but ponder how they evolved into what we see today. With it’s unusual horse-like head, chameleon eyes, monkey tail, kangaroo pouch and insect-like armor; how did did it evolve to be so strange? To understand that, we need to look at some of the seahorses relatives. One issue we face with discovering how seahorses evolved is the lack of fossils. There are a few fossils that show some early seahorses, but like most sea-dwelling creatures, it’s a very limited number. Fortunately for us, many of it’s living relatives give us a glimpse at the seahorse’s evolutionary path. While these relatives aren’t exactly what seahorses evolved from, they give a pretty clear picture of how changes over time go from subtle to extreme to become seahorses. First, we start out with the seahorse’s more normal but distant relatives. These are scorpion fish, a large group of ray finned fish. Some are elaborately ornate, like the lionfish. Photo by Christian Mehlführer Others are camouflaged to match their surroundings. Marbled Rock Fish. Photo by Nemo’s Great Uncle. Many though, look just like normal fish. Kelp Rockfish. Photo by Brian Gratwicke The next interesting ancestor analog is the stickleback. Many sticklebacks look like a pretty normal fish by all accounts. But their is something new starting. Sticklebacks are starting to develop the armored skeleton for protection, and lacks scales. But it’s still overall very fish-like. The male protects the eggs in a bubble nest he creates. The Three Spine Stickleback Gasterosteus aculeatus pictured below still looks overall fish-like. Three Spine Stickleback. Photo by Jack Wolf Then we come to the Fifteen Spine Stickleback Spinachia spinachia. Its mouth is elongated, its body stretched out; it’s starting to look less like your common fish. In sticklebacks, the parental care is done by the male. This also is not uncommon in fish, with many males taking on the role of primary caregiver. Fifteen Spine Stickleback. Photo by Mark Thomas Now we come to the middle of the journey. Here we have trumpetfish, Aulostomus spp. Still fishlike, still swimming like a fish, but the mouth of a seahorse is clearly evident. It’s an open water spawner, with no parental care. We don’t know where it diverged from it’s common ancestors or why it’s a broadcast spawner, but other traits, such as the elongated body, and suction like mouth are similar to seahorses. Trumpetfish. Photo by Vlad Karpinskiy It’s body is still fish like, and it swims like most common fish; it shares a similar mouth shape to seahorses, but less refined. Trumpetfish head detail. Photo by Noodlefish An ancestor similar to the cornetfish Fistularia spp. probably came next. Also known as flutemouths, these elongated fish still swims mid water, but has reduced fins and a very long snout. They are probably the largest of the fish we’ll be looking at, with some species growing up to 6′ (~180cm). Blue Spotted Cornetfish. Photo by Kevin Bryant Next in line is the ghost pipefish, which grows only to a maximum of 6″ (~15cm). They are probably a branch off of a common ancestor that shared many of the traits seahorses do, but with some differences. These fish have started to move to caring for their eggs on their body, like most close seahorse relatives. However, it’s the female that carries the eggs, clutching them in her pelvic fins. Ornate Ghost Pipefish. Photo by Doug Anderson Flagtail pipefish are the next on this evolutionary ride. Care of the eggs is once again the realm of the males. Chances are it never left, but it’s not clear why some living relatives like the trumpetfish and ghost pipefish developed different reproductive strategies. It’s pretty clear this is the beginning of what we think of as the paternal care common in these fish. The male carries eggs laid by the female in an intricate dance along his belly. Dunckerocampus spp. carries the eggs on their bellies completely exposed, while Doryrhamphus spp. has a flap of skin that helps protect the eggs. Flagtail pipefish swim midwater much like the fish listed above. Banded Pipefish, a type of Flagtail Pipefish that swims mid-water. Photo by Lakshmi Sawitri From there we go to pipefish that carry the eggs at the base of their tails, some in partial pouches, later with pouches that almost entirely encase the eggs. Most still have a tail fin, but it is getting smaller. They slither close to surfaces, using their bodies as anchors. Many use their bodies and even their tails to help grip on to rocks, seagrass, or floating algae. Dragonface Pipefish. Photo by Philippe Guillaume There are at least 200 species of pipefish, with a dizzying array of body types and behaviors. Some live in seagrass beds, others on coral reefs. Some are only 2″ (~5cm) long, but the biggest species grows to over 2′ (~60cm). The photo below shows a literal handful of different species found off the coast of North America. Several pipefish of different species found off the coast of North America. Photo by Roger Shaw Now we start to see an amazing transformation. Pygmy pipehorses are the next in this evolutionary march. These tiny fish are all 2.5″ (~65cm) or smaller in length. They hitch just like seahorses and lack a tail fin, and their body is starting to take the angular shape that seahorses have, but their heads are still overall in alignment with their long bodies. Interestingly, males prefer to keep their body vertically, but females perch more upright, similar to seahorses. West Atlantic Pygmy Pipehorse Amphelikturus dendriticus. Photo by Stig Thormodsrud Pygmy pipehorses are loosely grouped as pipefish-like pygmy pipehorses and seahorse-like pygmy pipehorses because of how similar they are to one or the other. The first of which is the pipefish-like pygmy pipehorses. They do not have a tail fin, instead using their prehensile tails to grasp onto algae and wait for food to swim by. They are frequently misidentified as pipefish or missed all together because of their diminutive size. Short Pouch Pygmy Pipehorse Acentronura-tentaculata Photo by Nick Hobgood The seahorse-like pygmy pipehorses could almost be mistaken for seahorses. One beautiful example is the Sydney Pygmy Pipehorse Idiotropiscis lumnitzeri. They look much closer to that of a true seahorse, and even have some of the head structures that seahorses have. Pregnant male Sydney Pygmy Pipehorse. Notice the round area between his body and tail. Photo by Michael McKnight  The head is distinct from the body, the male has a full brood pouch at the base of the tail. The head can bend, but is usually held in alignment with the body. They don’t chase down prey; instead waiting for it to drift past their holdfast. Sydney Pygmy Pipehorse. Photo by Steve Gillespie And finally we get to seahorses, the strangest fish of them all. They’ve made the leap to standing upright most of the time, the bent head allowing for a longer reach to snap up prey. But like their distant ancestors, still relies on camouflage to hunt and gulps their prey whole; only this time through a straw. Pot Belly Seahorse hitched to sponge. Photo by Doug Anderson. I hope you enjoyed this look into seahorse evolution. As mentioned earlier, this is a rough map based on living relatives, not the exact ancestors of seahorses. Taxonomy, the study of how animals are related and categorized is always changing so we may find new information about these relationships as time goes on. But hopefully these examples will make it easier to understand how the seahorse became what it is today. Evolutionary Tree This entry was posted on Friday, January 10th, 2014 at 8:42 pm and is filed under Biology. You can follow any responses to this entry through the RSS 2.0 feed. You can skip to the end and leave a response. Pinging is currently not allowed.

ORA Announces Availability of Captive Bred Blue Fin Watchman Gobies

Oceans Reefs & Aquariums has been very very busy over the last month or so. Since the beginning of December, the aquaculture experts have released two new fish (the Eastern Hulafish and Yellowstriped Cardinal), along with a gorgeous algae and even a brand new coral. And they are continuing with their strong performance in 2014 with the release of yet another new fish, the ORA Blue Fin Watchman Goby (Cryptocentrus fasciatus), which was just announced earlier today on their blog. Somewhat similar to the yellow watchman goby (C. cinctus), the blue fin watchman are only subtly different from their yellow cousins. Despite being predominantly grey in coloration, the blue fin gobies can take on a more yellow appearance, which of course depends on the environment in which it resides as well as other external cues. So, to better distinguish the two, you have to look at other key differences. The blue fin is a tad larger than the yellow watchman, and its dorsal and anal fins have more of a blue coloration to them (hence their name)

ORA Introduces Blue Hypnea Macroalgae

ORA’s newest introduction for 2013 – Blue Hypnea Macroalgae Other forms of this widespread Indo-Pacific seaweed are used in Asian kitchens as salad ingredients and in industry as a source of the thickener carageenan, but Blue Hypnea (Hypnea pannosa) is an iridescent blue ornamental algae and ORA believes it has a future in reef aquariums. According to ORA: “Though similar in appearance to Ochtodes sp. algae from the Caribbean, this species originates from Micronesia and has slightly different morphology. Blue Hypnea grows in very dense, matted clumps that loosely anchor to coarse substrates. It is not a particularly fast growing algae so containing its growth is not difficult. “We recommend moderate to high, full spectrum lighting for optimum coloration and growth. Photo taken under 10K Metal halide with supplemental flash.” Source: http://www.orafarm.com/products/algae/hypnea/