CORAL Featured Video: Reef Life of the Andaman Sea

httpv://www.youtube.com/watch?v=0liBnH0xlr0 CREDITS Reef Fishes – Reef Life of the Andaman Nick Hope | Bubble Vision | You Tube This is Part 9 of Nick Hope’s excellent series, also available in feature length on the Andaman Sea, also known as the Burma Sea, part of the eastern Indian Ocean. Read more here.

An Aquarist’s Notes: Turbulence in Hawaii

Butterflyfishes on the west coast of the Big Island of Hawaii where aquarium collectors are active. Image by Eric Sorensen, WSU. An Aquarist’s Notes: Turbulence in Hawaii I first went to Hawaii on assignment for CORAL Magazine in 2010, and for the better part of four years I have covered that state’s aquarium fishery. I expected to find a fishery full of complicated regulations and even more complicated conflict. I found the latter in spades, but the former, to my surprise, didn’t really exist. Regulations were relatively few and far between—no total allowable catches (TACs), no quotas, no bag limits, no limited entry. I was, quite frankly, shocked that a commercial fishery in U.S. waters would be so unregulated. The fishers I interviewed, especially on Big Island, didn’t view it that way. Many felt they were being unfairly targeted and that veils of regulation were being drawn around them like the barrier nets they use to catch aquarium fishes. Some felt they had consistently given ground, made concessions in the face of anti-trade activism. Some were ready to make a stand, saying they couldn’t—wouldn’t—give any more. Some of these fishers opposed the rules package just signed by the governor. A few of them still oppose it, although they are not willing to say so on the record. Those fishers who stand in opposition to the new rules have some strange bedfellows. There are the anti-trade activists who say the rules don’t go far enough; the most extreme will not be satisfied with anything short of a fishery closure. Then there are mainland aquarists who are lukewarm on the new rules. They worry that a White List will make it more difficult to acquire some species with which they want to work in the short term. They anticipate a slippery slope that will lead to fewer and fewer species remaining available to trade in the long run. Personally, I was pleased to see the governor sign the rules package. I’m pleased because I see it as a step forward for aquarium fisheries in general. I see an opportunity to manage the fishery based on real data. The data really does matter, and rather than less, we need more. This rules package takes a relatively small swath of ocean—a shoreline of less than 150 miles—and says we’re going to manage it based on something more than anecdote and emotion. I look forward to reporting on the progress and talking about how this may be a model viable for export to other aquarium fisheries in far worse shape than Hawaii’s. Hawaii is on a path of good, data-based, adaptive management of its aquarium fishery. This type of management can protect the fishery in terms of both environmental sustainability and economic value. It replaces a messy form of conflict resolution with a multi-stakeholder, community-based approach, and now that the new rules are law, I think we all owe it to the people, the process, and the potential to get behind them.

iSeahorse Launches to Track Seahorse Sightings

Background Photo by Anthony Pearson. Are you a diver? Or perhaps just near the ocean and have the occasional sighting of seahorses in the wild? Project Seahorse launches iSeahorse.org to track seahorses spotted around the globe. And they have an iphone app for those world travelers on the go. This is citizen science at it’s best, and a great opportunity to help understand the biology of seahorses along with population information that can be used in confirmation efforts. Heather Koldewey writes; Dear friends and colleagues, We have some exciting news: Today marks the launch of iSeahorse, a brand-new citizen science initiative that allows anyone, anywhere in the world to contribute to seahorse science and conservation with just a few clicks of a mouse or taps on a smartphone. A collaboration among University of British Columbia, Zoological Society of London, John G. Shedd Aquarium, and partners all over the world, iSeahorse allows you to share your seahorse observation anytime you spot one of these mysterious and threatened animals in the wild. Scientists from Project Seahorse and the iSeahorse network will use your vital information to better understand seahorse behaviour, species ranges, and the threats seahorses face. We will use this knowledge to improve seahorse conservation across the globe. Whether you’re a diver, a fisher, a scientist, a seahorse enthusiast, or just on a beach holiday, we want to hear from you! Sharing your seahorse observations is fast and easy. Visit www.iseahorse.org or download the iSeahorse app for iPhone to get started. On the iSeahorse website, you can view interactive seahorse maps and species profiles, contribute species identifications, learn about conservation threats, and advocate for increased conservation measures in your ocean neighbourhood. For more information, visit http://www.iseahorse.org/?q=about or email us at [email protected]! The Project Seahorse Team http://www.projectseahorse.org So go to the website, download the app, and help make science happen! This entry was posted on Saturday, October 19th, 2013 at 12:59 am and is filed under Diving. You can follow any responses to this entry through the RSS 2.0 feed. You can skip to the end and leave a response. Pinging is currently not allowed.

Back from the Dead: Remote Reef Recovers

10 Apr, 2013 Coral patch in the Scott Reef area of northwestern Australia, now showing strong recovery from a devastating 1998 bleaching event. Credit: N. Thake. Contrary to popular wisdom, coral reefs in remote areas have the potential to rebound from bleaching events and in time frames that marine biologists find astonishing. Isolated coral reefs can recover from catastrophic damage as effectively as those with nearby undisturbed neighbours, a long-term study by marine biologists from the Australian Institute of Marine Science (AIMS) and the ARC Centre of Excellence for Coral Reef Studies (CoECRS) has shown. Scott Reef, a remote coral system in the Indian Ocean, has largely recovered from a catastrophic mass bleaching event in 1998, according to the study published in the journal Science. Following the bleaching event in 1998, 70-90% of stony corals were killed in the Scott Reef area 300 km off northwest Australia. Credit: L. Smith. The study challenges widely accepted theory that suggested isolated reefs were more vulnerable to disturbance, because they were thought to depend on recolonisation from other reefs. Instead, the scientists found that the isolation of reefs allowed surviving corals to rapidly grow and propagate in the absence of human interference. Australia’s largest oceanic reef system, Scott Reef, is relatively isolated, sitting out in the Indian Ocean some 250 km from the remote coastline of north Western Australia (WA). Prospects for the reef looked gloomy when in 1998 it suffered catastrophic mass bleaching, losing around 80% of its coral cover. The study shows that it took just 12 years to recover. Scott Reef lies 300 km off northwestern Australia and is a group of atolls in the Timor Sea. Credit: Carto ANU Spanning 15 years, data collected and analysed by the researchers shows how after the 1998 mass bleaching the few remaining corals provided low numbers of recruits (new corals) for Scott Reef. On that basis recovery was projected to take decades, yet within 12 years the cover and diversity of corals had recovered to levels similar to those seen pre-bleaching. “The initial projections for Scott Reef were not optimistic,” says Dr James Gilmour from AIMS, the lead author on the publication, “because, unlike reefs on the Great Barrier Reef, there were few if any reefs nearby capable of supplying new recruits to replenish the lost corals at Scott Reef. “However, the few small corals that did settle at Scott Reef had excellent rates of survival and growth, whereas on many nearshore reefs high levels of algae and sediment, and poor water quality will often suppress this recovery. “We know from other studies that the resilience of reefs can be improved by addressing human pressures such as water quality and overfishing,” says Dr Gilmour. “So it is likely that a key factor in the rapid recovery at Scott Reef was the high water clarity and quality in this remote and offshore location.” Dr Andrew Heyward, Principal Research Scientist at AIMS, highlights another conclusion from their findings. “Previously we’ve tended to factor proximity to other reefs as a key attribute when estimating the resilience of a reef following a major disturbance, but our data suggests that given the right conditions, reefs might do much of the recovery by themselves.” This finding could have implications for the management of marine protected areas. In their publication the team also draws attention to the important role played by climate change in the longer-term prospects for coral reefs, as Prof Morgan Pratchett of CoECRS explains. Scott Reef had largely recovered from a catastrophic mass bleaching of corals within twelve years of the disturbance, despite the lack of connectivity to other reefs in the region. The rate of recovery was attributed to the lack of many local anthropogenic pressures affecting reefs around the world, such as degraded water quality and overfishing of herbivores (credit: N Thake). “While it is encouraging to see such clear recovery, we need to be mindful of the fact that the coral recovery at Scott Reef still took over a decade. If, as the climate change trend suggests, we start to see coral bleaching and other related disturbances occurring more frequently, then reefs may experience a ratcheting down effect, never fully recovering before they suffer another major disturbance. “By preventing illegal fishing and enhancing water quality on coral reefs in all regions we will give these reefs a greater capacity to recover from major disturbances.” The highly detailed, long-term data set makes Scott Reef the best studied reef in Australia’s Indian Ocean territory. The study provides valuable new perspectives on ecosystem function and resilience of coral reefs situated in the northwest Australia, and in other contexts such as the Great Barrier Reef, and illustrates the importance of AIMS’ research collaborations with its industry partners. CREDIT: From materials released by the Australian Institute of Marine Science, Townsville, Queensland. Images provided by Science in Public. The paper “Recovery of an isolated coral reef system following severe disturbance”, by J. P. Gilmour, L. D. Smith, A. J. Heyward, A. H. Baird and M. S. Pratchett was published by the journal Science on 5th April, 2013. Science 5 April 2013Vol. 340 no. 6128 pp. 69-71DOI: 10.1126/science.1232310 ABSTRACT Coral reef recovery from major disturbance is hypothesized to depend on the arrival of propagules from nearby undisturbed reefs. Therefore, reefs isolated by distance or current patterns are thought to be highly vulnerable to catastrophic disturbance. We found that on an isolated reef system in north Western Australia, coral cover increased from 9% to 44% within 12 years of a coral bleaching event, despite a 94% reduction in larval supply for 6 years after the bleaching. The initial increase in coral cover was the result of high rates of growth and survival of remnant colonies, followed by a rapid increase in juvenile recruitment as colonies matured. We show that isolated reefs can recover from major disturbance, and that the benefits of their isolation from chronic anthropogenic pressures can outweigh the costs of limited connectivity. EDITOR’S SUMMARY Reef Repair Coral reefs suffer mass mortality because of coral bleaching, disease, and tropical storms, but we know much more about when, where, and how rapidly these ecosystems have collapsed than we do about their recovery. Gilmour et al. (p. 69; see the Perspective by Polidoro and Carpenter) studied a highly isolated coral reef before and after a climate-induced mass mortality event that killed 70 to 90% of the reef corals. The initial recovery of coral cover involved growth and survival of remnant colonies, which was followed by increases in larval recruitment. Thus, in the absence of chronic disturbance, even isolated reefs can recover from catastrophic disturbance. http://www.aims.gov.au/docs/about/about.html;jsessionid=BDA4BF70AA0D7EAAAAB8D8F60F53D680